Influenza
Influenza

Edwin D. Kilbourne, M.D.

Distinguished Service Professor
Mount Sinai School of Medicine of the
City University of New York
New York, New York

Plenum Medical Book Company • New York and London
This book is dedicated to the memory of Frank L. Horsfall, Jr., mentor and friend, in whose laboratory at the Rockefeller Institute for Medical Research I first met the virus of influenza and learned the methods of quantitative biology.
Preface

My lifetime encompasses the postwar subsidence in the early 1920s of the greatest influenza pandemic in history, direct encounters with FM1 virus at Fort Monmouth in 1947, the care of influenza patients in the 1950s, the pursuit of the influenza virus through the modern pandemics of 1957 and 1968, and a present in which the genes of the virus have dissembled in the DNA of vaccinia virus and Escherichia coli through the wand of "high tech."

If my corpus could be fossilized for archival and archaeological purposes, it would be found to contain immune cells branded with the imprint of the "swine" influenza virus of post-1918 and brain cells no less imprinted with memories of the abortive return of its descendant during America's bicentennial. But before that unlikely event, I wanted to try to make some sense out of this baffling disease and its viruses—expecting no definitive revelations but hoping for a sharper definition of problems. Hence this book.

It is an audacious act in these days of specialization to essay a book such as this singlehandedly, but I have done so for selfish reasons. I wanted to reexamine old questions about the nature of influenza and its epidemics in the light of the dazzling advances in molecular biology of the past few years. No virus has been better studied, but few diseases are less well understood. The influenza virus glycoproteins have become models for biologists interested in membrane assembly and function; knowledge of their tertiary (and even quaternary) structure surpasses that available for most other proteins. The rapidly mutating RNAs of influenza virus have captured the interest and fired the imagination of evolutionary geneticists. Cellular immunologists have discovered this enveloped virus and, in collaboration with molecular geneticists, have studied the recognition of single viral proteins introduced by cloning vectors.

I marvel, properly, at all this activity and applaud it, but the physician in me asks, what about influenza? What about the disease? At this time, after a professional lifetime of laboratory investigations and 2 years of intensive scholarship, I cannot tell you why people get sick with influenza or how they do. How this elegantly characterized virus causes aches and pains and fever is simply not understood. Nor do we fully comprehend viral virulence or the genesis of pandemics. But we shall. The only prophecy that I dare to make is that we are on the threshold of deep insights into pathogenesis that will come from the convergence of presently parallel studies of the molecules of both virus and host. I hope
That this book can expedite this convergence by illuminating gray areas and drawing attention to studies outside the mainstream of virology.

One day we shall "see influenza plain."

Edwin D. Kilbourne

New York
Acknowledgments

I take pleasure in acknowledging the unfailing generosity of colleagues throughout the world who have shared their research findings with me in advance of publication. They include the following, none of whom should be held responsible for my interpretation of their work:

I am deeply indebted to Marilyn Tartaglia for her dedicated and tireless efforts in the preparation of the major portion of this manuscript and to Valerie M. Josephson, whose editorial skills facilitated its completion.

E.D.K.
Contents

I. INTRODUCTION

1. **History of Influenza**
 - Introduction .. 3
 - The Credibility of Historical Evidence 3
 - Prehistory: The Origin of Influenza 4
 - Influenza Prior to 1889 4
 - Influenza 1889–1933: Seroarcheology and the Recycling of Antigens .. 5
 - Influenza Post-1933 .. 9
 - Early History Revisited 12
 - The Pandemics ... 13
 - Pandemics Defined ... 14
 - The Modern Pandemics 14
 - Influenza 1918 ... 14
 - Influenza 1946–47 .. 16
 - Influenza 1957 ... 17
 - Influenza 1968 ... 17
 - Influenza Post-1968: Major Antigenic Changes in the Virus Are Not Necessarily Followed by Pandemics 19
 - Influenza 1976: The First Epidemic of Swine Influenza Virus Infection in Man .. 19
 - Influenza 1977 ... 20
 - References .. 20

II. THE INFLUENZA VIRUSES

2. **Taxonomy and Comparative Virology of the Influenza Viruses**
 - Introduction .. 25
 - Taxonomy of Influenza Viruses 26
 - Relation of Influenza Viruses to Other Enveloped Viruses with RNA Genomes .. 28
 - Influenza Viruses as Segmented Genome Viruses 30
 - References .. 32
3. Viral Structure and Composition

Introduction .. 33
Size and Morphology of Influenza Virus Particles 33
 The Viral Envelope 37
 Internal Structure 38
Structure of the Envelope Glycoproteins 45
 Hemagglutinin Structure 45
 Neuraminidase Structure 47
 Carbohydrate ... 48
 Lipid ... 50
 RNA ... 50
Structural Differences among Influenza A, B, and C Viruses 51
Tick-Borne Viruses Structurally Similar to Orthomyxoviruses .. 52
References .. 52

4. Replication of Influenza Viruses

Replication Systems and Viral Quantitation 57
Viral Genes and Gene Products Involved in Virus Replication:
 Coding Assignments of Influenza Virus Genes 58
Stages of Infection and Replication 59
 Viral Attachment to Host Cells: Adsorption 59
 Viral Entry .. 60
 Proteolytic Activation of the HA and Virus–Cell Fusion 61
 Virus–Cell Fusion ... 62
 Cell Entry and Uncoating through Endocytosis 62
Transcription and Replication of Influenza Virus RNA 62
 Primary Transcription 65
 Secondary Transcription and RNA Replication 67
Synthesis of Viral Proteins 67
 The P Proteins .. 68
 NP ... 68
 The Nonstructural Proteins 70
 Hemagglutinin ... 70
 Neuraminidase .. 71
Viral Maturation and Assembly 71
 Virus Budding and Release 72
Abortive and Inefficient Virus Replication 74
Anomalous Viral Replication and the Formation of Defective Virus .. 76
Interference .. 79
References .. 80

5. Cytopathogenesis and Cytopathology of Influenza Virus
 Infection of Cells in Culture

Introduction .. 89
Primary Intrinsic Cytotoxicity of Influenza Viruses 89
6. Influenza Virus Genetics, Viral Adaptation, and Evolution

Introduction .. 111
The Nature of the Viral Genome 111
Genetic Systems .. 113
Viral Heterogeneity 114
Host Cell Heterogeneity 114
Viral Mutation and Mutants 115
Mutation Frequency 115
Frequency of Influenza Virus Antigenic Variation 115
Molecular Basis of Influenza Virus Mutations 116
Laboratory-Derived Mutants and Their Contribution to Genetic
Analysis of Influenza Viruses 116
Phenotypic Markers 116
Operational Mutants: Conditional Lethal Mutants Used in
Definitive Genetic Studies of Influenza Viruses 117
Temperature-Sensitive (ts) Mutants 117
Host Range (hr) Mutants 118
Temperature-Dependent Host Range (td–hr) Mutants ... 118
Drug-Resistant Mutants 118
Viral Variation ... 119
Antigenic Variants 119
Sites of Antigenic Variation: The HA Polypeptide 119
The Molecular Basis of HA Antigenic Variation 121
Antigenic Variation in the NA 121
Antigenic Variation in Other Viral Proteins 121
Biologically Selected (Nonimmunoselected) Variants ... 122
Nonimmunoselected HA Variants 122
Variants Selected by Replication Characteristics 122
Host-Determined Antigenic Variation 123
HA Glycosylation Mutants .. 123
Pleiotropism and Covariation .. 123
The Genetics of Major Antigenic Change in Influenza A Viruses 124
Genetic and Nongenetic Viral Interactions 125
Phenotypic Mixing .. 125
Influenza Virus-Influenza Virus Pseudotypes 125
Heterologous Pseudotypes .. 126
Genetic Reassortment .. 126
Complementation-Reassortment ... 128
Multiplicity Reactivation and Gene Rescue 128
Virulence and Attenuation as Genetic Phenomena 129
 Identification of Single Genes Influencing Virulence and
Attenuation .. 130
Analysis of Virulence through Genetic Reassortment 130
Cloning and Expression of Influenza Virus Genes: The New
Influenza Virus Genetics .. 134
Contributions of Gene Cloning .. 134
Gene Expression .. 134
Contribution of the Expression of Isolated Viral Genes to the
Understanding of Influenza Virus Infection 136
Prospects and Potential of Site-Specific Mutagenesis 137
Viral Variation and Attenuation in Nature 137
Influenza Viral Adaptation, Genetic Polymorphism, and Evolution ... 137
Viral Adaptation .. 137
Genetic Dimorphism ... 138
Viral Evolution .. 141
Influenza Virus Evolution is the Study of the Evolution of
Genes, Not Viruses .. 141
Evolutionary Potential of Influenza Viruses as Segmented
Genome Viruses .. 142
Evolution of the Genes of Influenza Viruses by Sequential
Mutations .. 142
Evolution of the HA Gene ... 143
Antigenic Drift .. 143
Evolutionary Changes in the HA Affecting Other Than
Antigenic Sites ... 144
Evolution of Genes for Nonsurface Viral Proteins 144
NS ... 144
Other Genes ... 144
References ... 145

III. INFLUENZA: INFECTION AND DISEASE

7. Influenza in Man

Clinical Response to Infection .. 157
Findings on Physical Examination ... 158
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viremia and Infection of Nonrespiratory Organs</td>
<td>182</td>
</tr>
<tr>
<td>Pathophysiological Effects of Influenza</td>
<td>182</td>
</tr>
<tr>
<td>Effects on Respiratory Function</td>
<td>182</td>
</tr>
<tr>
<td>Effects on Ciliary Function</td>
<td>183</td>
</tr>
<tr>
<td>In Vivo Effects on Leukocytes</td>
<td>183</td>
</tr>
<tr>
<td>Polymorphonuclear Leukocytes</td>
<td>183</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>183</td>
</tr>
<tr>
<td>Monocytes and Alveolar Macrophages</td>
<td>183</td>
</tr>
<tr>
<td>Effects on Host Resistance to Bacterial Infections</td>
<td>183</td>
</tr>
<tr>
<td>Fever</td>
<td>184</td>
</tr>
<tr>
<td>The Immunologic Response in Influenza</td>
<td>184</td>
</tr>
<tr>
<td>Humoral Antibody Response</td>
<td>184</td>
</tr>
<tr>
<td>Nature and Kinetics of the Response</td>
<td>184</td>
</tr>
<tr>
<td>The Antigenic Spectrum of Primary Antibody Response in Influenza</td>
<td>186</td>
</tr>
<tr>
<td>Antibody Response to NA</td>
<td>187</td>
</tr>
<tr>
<td>Antibody Response to Internal Antigens of the Virus</td>
<td>187</td>
</tr>
<tr>
<td>Anamnestic Response in Influenza: “Original Antigenic Sin”</td>
<td>187</td>
</tr>
<tr>
<td>Nonspecific Effects of Influenza Virus on Immune Response</td>
<td>187</td>
</tr>
<tr>
<td>Cell-Mediated Immune Response in Influenza</td>
<td>188</td>
</tr>
<tr>
<td>Macrophage Response</td>
<td>188</td>
</tr>
<tr>
<td>Lymphocyte-Mediated Responses</td>
<td>188</td>
</tr>
<tr>
<td>Helper T Cells</td>
<td>188</td>
</tr>
<tr>
<td>Cytotoxic T Lymphocytes</td>
<td>188</td>
</tr>
<tr>
<td>Antibody-Dependent Cell-Mediated Cytotoxicity against Influenza Virus-</td>
<td>189</td>
</tr>
<tr>
<td>Virus-Infected Cells</td>
<td>189</td>
</tr>
<tr>
<td>Immunologic Basis of Recovery from Influenza</td>
<td>189</td>
</tr>
<tr>
<td>The Role of Interferon</td>
<td>189</td>
</tr>
<tr>
<td>The Role of Antibody in Recovery from Influenza</td>
<td>191</td>
</tr>
<tr>
<td>Early Cellular Immune Responses and Recovery</td>
<td>191</td>
</tr>
<tr>
<td>Other Factors That May Influence Recovery</td>
<td>191</td>
</tr>
<tr>
<td>Modulation of the Cellular Immune Response</td>
<td>191</td>
</tr>
<tr>
<td>The Importance of an Intact Complement Pathway</td>
<td>192</td>
</tr>
<tr>
<td>Immunity to Influenza</td>
<td>192</td>
</tr>
<tr>
<td>Homologous Immunity</td>
<td>192</td>
</tr>
<tr>
<td>Heterovariant (Intrasubtypic) Immunity</td>
<td>194</td>
</tr>
<tr>
<td>Heterosubtypic Immunity</td>
<td>194</td>
</tr>
<tr>
<td>Serum Antibody as a Marker for Immunity in Influenza</td>
<td>194</td>
</tr>
<tr>
<td>The Pathology of Influenza</td>
<td>195</td>
</tr>
<tr>
<td>Influenza Virus Pneumonia</td>
<td>198</td>
</tr>
<tr>
<td>Clinical Pathology of Influenza</td>
<td>202</td>
</tr>
<tr>
<td>Therapy of Influenza</td>
<td>202</td>
</tr>
<tr>
<td>Specific Chemotherapy: Amantadine</td>
<td>202</td>
</tr>
<tr>
<td>Mechanism of Action</td>
<td>203</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>203</td>
</tr>
<tr>
<td>Toxicity</td>
<td>203</td>
</tr>
<tr>
<td>Drug Resistance</td>
<td>203</td>
</tr>
</tbody>
</table>
8. The Laboratory Diagnosis of Influenza

Introduction .. 219
Virus Isolation and Identification 219
 Animal Inoculation .. 219
 Chick Embryos .. 220
 Cell Culture ... 220
 Primary Cell Culture 220
 Continuous Cell Lines 220
 Virus Identification 221
Direct Demonstration of Influenza Viruses or Viral Proteins in
 Patients’ Specimens 221
 Electron Microscopy 221
 Immunofluorescence 221
 Enzyme Immunoassay 222
Measurement of Specific Antibody Response 222
 Hemagglutination Inhibition 222
 Neutralization .. 224
 Complement Fixation 224
 Single Radial Hemolysis 224
 Enzyme Immunoassay 225
 Neuraminidase Inhibition 225
References .. 225

9. Animal Influenza: Ecology and Disease

Introduction .. 229
Ecology of Influenza Viruses 229
Distribution of Influenza A Viruses in Nature 229
Host Range of Influenza Viruses 230
 Animals in Which Serially Propagated Infections Occur .. 230
 Animals Subject to Sporadic Infection 230
 Animals Susceptible to Laboratory Infection 232
Host Specificity of Influenza Viruses 232
Interspecific Transmission 234
 Man to Animals .. 235
 Animals to Man .. 235
Infection of Animals with Influenza B and C Viruses 235
Disease in Commonly Infected Species 236
Influenza in Swine ... 236
 The Viruses ... 236
 The Disease ... 236
<table>
<thead>
<tr>
<th>Page</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td>Epizootiology</td>
</tr>
<tr>
<td>237</td>
<td>Swine Influenza Virus Infection Outside the United States</td>
</tr>
<tr>
<td>238</td>
<td>Influenza in Horses</td>
</tr>
<tr>
<td>238</td>
<td>The Viruses</td>
</tr>
<tr>
<td>239</td>
<td>Antigenic Variation</td>
</tr>
<tr>
<td>239</td>
<td>The Disease</td>
</tr>
<tr>
<td>239</td>
<td>Epizootiology</td>
</tr>
<tr>
<td>240</td>
<td>Influenza in Domestic Fowl</td>
</tr>
<tr>
<td>240</td>
<td>Chicken</td>
</tr>
<tr>
<td>240</td>
<td>The Viruses</td>
</tr>
<tr>
<td>241</td>
<td>The Disease</td>
</tr>
<tr>
<td>241</td>
<td>Epizootiology</td>
</tr>
<tr>
<td>242</td>
<td>Turkey</td>
</tr>
<tr>
<td>242</td>
<td>The Viruses</td>
</tr>
<tr>
<td>242</td>
<td>The Disease</td>
</tr>
<tr>
<td>242</td>
<td>Epizootiology</td>
</tr>
<tr>
<td>242</td>
<td>Ducks</td>
</tr>
<tr>
<td>242</td>
<td>The Viruses</td>
</tr>
<tr>
<td>242</td>
<td>The Disease</td>
</tr>
<tr>
<td>243</td>
<td>Epizootiology</td>
</tr>
<tr>
<td>243</td>
<td>Animals Subject to Sporadic Infection</td>
</tr>
<tr>
<td>243</td>
<td>Epizootic and Enzootic Influenza in Wild Mammals and Birds</td>
</tr>
<tr>
<td>243</td>
<td>Influenza in Migratory and Other Birds</td>
</tr>
<tr>
<td>244</td>
<td>Epizootic Influenza in Seals</td>
</tr>
<tr>
<td>244</td>
<td>Influenza in Laboratory Animals</td>
</tr>
<tr>
<td>245</td>
<td>References</td>
</tr>
</tbody>
</table>

IV. EPIDEMIOLOGY, SURVEILLANCE, AND CONTROL

10. The Epidemiology of Influenza

<table>
<thead>
<tr>
<th>Page</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>Influenza Surveillance and the Ascertainment of Infection</td>
</tr>
<tr>
<td>255</td>
<td>Laboratory Surveillance</td>
</tr>
<tr>
<td>256</td>
<td>Virus Isolation and Identification</td>
</tr>
<tr>
<td>257</td>
<td>Serological Surveillance</td>
</tr>
<tr>
<td>258</td>
<td>Measurements of Morbidity</td>
</tr>
<tr>
<td>258</td>
<td>Direct Methods</td>
</tr>
<tr>
<td>261</td>
<td>Indirect Methods</td>
</tr>
<tr>
<td>261</td>
<td>Impact on Mortality Rates</td>
</tr>
<tr>
<td>262</td>
<td>Influenza as a Burden on the Public Health</td>
</tr>
<tr>
<td>264</td>
<td>Pandemic, Epidemic, and Endemic Disease</td>
</tr>
<tr>
<td>264</td>
<td>Epidemiologic Determinants of Influenza</td>
</tr>
<tr>
<td>264</td>
<td>Viral</td>
</tr>
<tr>
<td>264</td>
<td>Antigenic Variation</td>
</tr>
</tbody>
</table>
Variation in Other Viral Properties
Host Factors
Age
Immune Phenotype
Host Genotype
Other Host Factors
Environmental Factors
Season and Climate
Crowding and Infection Density
Pandemic Influenza
Pandemics Defined
Pandemic Determinants
Pandemicity and the Phenomenon of Viral Disappearance
Conditions for the Entry of Pandemic Viruses
Interpandemic Influenza
Endemic Influenza
Epidemiology of Influenza B and C
Influenza B
Influenza C
Experimental and Theoretical Epidemiology of Influenza
Theoretical Epidemiology
Experimental Epidemiology
Molecular Epidemiology and Epizootiology of Influenza
Intraepidemic Viral Heterogeneity
Reassortment of Influenza A H1N1 and H3N2 Viruses in Humans
Tracing of an Epidemic (Epizootic) Virus
Molecular Surveillance
Evidence of Viral Fixation and Reappearance
Implications of Molecular Evolution for Influenza Epidemiology:
The Case of Influenza C Virus
The Limitations and Promise of Molecular Epidemiology
References

11. The Control of Influenza
Introduction
Vaccines: Licensed and Experimental
The Immunology of Influenza Vaccination
Categorical Problems in the Artificial Presentation of Antigen
Kinetics and Duration of Response to Influenza Vaccines
Homologous (Variant-Specific) Immunity
Homosubtypic (Heterovariant) Immunity
Homotypic (Heterosubtypic) Immunity
Local versus Systemic Immunity
Induction of Cellular Immunity by Vaccines
Vaccine-Induced Response to Internal Viral Proteins
CONTENTS

Effects of Influenza Vaccine on Drug Metabolism 316
Untoward Effects of Live-Virus Vaccines 316
Chemoprophylaxis .. 317
Specific Recommendations for the Control of Influenza by Vaccine
and Chemoprophylaxis .. 317
Target Groups for Vaccination 318
Vaccine Recommendations .. 319
Antiviral Agent: Amantadine .. 319
Control of Animal Reservoirs of Infection 319
Sociological and Economic Problems in the Control of Influenza 321
Implementation of Present Vaccination Policy 321
Vaccine Efficacy in Different Populations 321
Strategies for Vaccine Administration 322
The Perennial Problem in Vaccine Supply 323
Mass Vaccination against Pandemic Disease: The Swine Influenza
Vaccination Program as Paradigm 324
The Influenza Epidemic at Fort Dix, New Jersey in 1976 326
Swine Influenza Virus Infection at Fort Dix as a Pandemic
Threat ... 327
New Information ... 327
Unknown at That Time .. 327
Known at That Time .. 327
Epidemiologic Precedent ... 327
The National Immunization Program 328
The Decision to Undertake Mass Immunization 328
Implementation of the Program 328
The Lessons of 1976 .. 331
About Influenza ... 331
About Mass Immunization: A Retrospective Assessment of the
National Immunization Program 331
Planning for Future Mass Immunization Programs in Response
to Threats of Pandemic Disease 331
References ... 332

Index ... 347
Introduction
INTRODUCTION

Because influenza is defined as much by its epidemiology as by its symptomatology, and because its causative virus rapidly and progressively changes, historical considerations are uniquely important in defining and evaluating this disease. The continual antigenic evolution of the virus is soon followed by specific and reciprocal changes in the immune status of infected human populations so that the pattern of influenza each year or decade reflects the experience of the community during the preceding one.

THE CREDIBILITY OF HISTORICAL EVIDENCE

As we probe, still, at the terminus of the 20th century, for the origin of pandemics, we seek answers to many of the same questions raised in earlier centuries about meteorological conditions, disease outbreaks in animals, and other associated natural phenomenon. But the credibility of historical records is, in general, inversely proportional to their antiquity. With influenza, remote observations are clouded not only by temporal distance but by a background of poxes, murrains, plagues, agues, pestilence, and famine that often obscured the perception of influenza as a distinct and specific entity. To make matters worse, reliable chroniclers of disease seem to have been few, so that one is often left at the mercy of inept or imaginative observers. Then, too, influenza lacks the patho-